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Lecture 22 Highlights 
Phys 402 

 
To allow for all possible “impact parameters” we have to allow for every possible angular 
momentum quantum number in the solution to the angular equation (note that classically 
the angular momentum of the incoming particle is 𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚, which means that a sum over 
ℓ is roughly analogous to a sum over impact parameters).  This means the solution is in the 
form of an infinite sum:  

𝜓𝜓(𝑟𝑟,𝜃𝜃) = 𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + ∑ 𝐶𝐶ℓ,𝑚𝑚 ℎℓ
(1)(𝑘𝑘𝑟𝑟) ℓ,𝑚𝑚 𝑌𝑌ℓ,𝑚𝑚(𝜃𝜃,𝜙𝜙)�, where the 𝐶𝐶ℓ,𝑚𝑚 are unknown 

expansion coefficients.  However, because we shall assume that the scattering potential is 
azimuthally symmetric, only the 𝑚𝑚 = 0 terms are relevant to the expansion.  Since 
𝑌𝑌ℓ,𝑚𝑚(𝜃𝜃,𝜙𝜙)~𝑒𝑒𝑖𝑖𝑚𝑚𝑖𝑖, it effectively reduces to just the Legendre polynomials as a function of 

𝜃𝜃: 𝑌𝑌ℓ,𝑚𝑚=0(𝜃𝜃,𝜙𝜙) = �2ℓ+1
4𝜋𝜋

 𝑃𝑃ℓ(cos 𝜃𝜃).  Re-writing the expansion coefficients as 𝐶𝐶ℓ,0 =

 𝑖𝑖ℓ 𝑘𝑘 �4𝜋𝜋(2ℓ + 1) 𝑎𝑎ℓ (to make it compatible with a future expression for the incoming 
wave), where we have now defined the unknown complex partial wave amplitudes 𝑎𝑎ℓ.  The 
solution to the scattering problem can now be written as 𝜓𝜓(𝑟𝑟,𝜃𝜃) = 𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 +

𝑘𝑘 ∑ 𝑖𝑖ℓ (2ℓ + 1) 𝑎𝑎ℓ ℎℓ
(1)(𝑘𝑘𝑟𝑟) ℓ 𝑃𝑃ℓ(cos𝜃𝜃)�.  The expansion of the outgoing wave as a sum 

over coefficients times the Legendre polynomial takes advantage of the completeness 
property of the 𝑃𝑃ℓ(cos 𝜃𝜃) in expressing any function of angle 𝜃𝜃. 

By looking in the limit 𝑘𝑘𝑟𝑟 ≫ 1 and using the asymptotic form for the spherical 
Hankel function, we find the solution reduces to the form of Eq (1) with the scattering 
amplitude 𝑓𝑓(𝜃𝜃) = ∑  (2ℓ + 1) 𝑎𝑎ℓ ℓ=0 𝑃𝑃ℓ(cos𝜃𝜃), written in terms of the partial wave 
amplitudes.   

𝜓𝜓(𝑟𝑟,𝜃𝜃) = 𝐴𝐴 �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓(𝜃𝜃) 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
�,    (1) 

This allows us to write the total scattering cross section as 𝜎𝜎 = ∬𝐷𝐷(𝜃𝜃)𝑑𝑑Ω =
∬|𝑓𝑓(𝜃𝜃)|2 𝑑𝑑Ω = 4𝜋𝜋∑ (2ℓ + 1) |𝑎𝑎ℓ|2∞

ℓ=0 .  The total cross section is thus simply related to 
the weighted sum of the absolute squares of the partial wave amplitudes.  To find these 
amplitudes we need to solve the full Schrodinger equation (Eq. (2) below) including the 
scattering potential 𝑉𝑉(𝑟𝑟) in the Interior region and match the boundary conditions with 
the intermediate and radiation zone solutions. 
− ℏ2

2𝑚𝑚
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑟𝑟2

+ �𝑉𝑉(𝑟𝑟) + ℓ(ℓ+1)ℏ2

2𝑚𝑚𝑟𝑟2
� 𝑢𝑢 = 𝐸𝐸𝑢𝑢       (2) 

 A technical step is taken to re-express the 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 incoming wave with Rayleigh’s 
formula as a sum over all angular momenta, so that the full solution becomes: 𝜓𝜓(𝑟𝑟, 𝜃𝜃) =
𝐴𝐴 � ∑ 𝑖𝑖ℓ (2ℓ + 1) �𝑗𝑗ℓ(𝑘𝑘𝑟𝑟) + 𝑖𝑖 𝑘𝑘 𝑎𝑎ℓ ℎℓ

(1)(𝑘𝑘𝑟𝑟)� ℓ 𝑃𝑃ℓ(cos𝜃𝜃)�.  Since angular momentum 
(parameterized by ℓ) is conserved upon elastic scattering from a spherically-symmetric 
potential, each term in this sum is independent.  This is called the partial wave expansion 
for the scattering wavefunction. 
 As an example we considered the quantum version of hard-sphere scattering.  This 
is a potential described by 𝑉𝑉(𝑟𝑟) = �∞ for 𝑟𝑟 ≤ 𝑎𝑎

0 for 𝑟𝑟 > 𝑎𝑎 .  The solution to the full Schrodinger 
equation is pretty straightforward in this case.  We simply require “hard sphere boundary 

https://demonstrations.wolfram.com/PolarPlotsOfLegendrePolynomials/
https://www.physics.umd.edu/courses/Phys402/AnlageFall21/Plane%20Wave%20Expansion%20in%20Spherical%20Bessel%20FUnctions%20and%20Legendre%20Polynomials.pdf
https://www.physics.umd.edu/courses/Phys402/AnlageFall21/Plane%20Wave%20Expansion%20in%20Spherical%20Bessel%20FUnctions%20and%20Legendre%20Polynomials.pdf
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conditions”, namely  𝜓𝜓(𝑎𝑎,𝜃𝜃) = 0.  Due to the independence of each term in the sum on ℓ, 
each term must separately be zero, yielding  𝑎𝑎ℓ = 𝑖𝑖 𝑗𝑗ℓ(𝑖𝑖𝑘𝑘)

𝑖𝑖 ℎℓ
(1)(𝑖𝑖𝑘𝑘)

.  The total scattering cross 

section can be written as 𝜎𝜎 = 4𝜋𝜋 ∑ (2ℓ + 1) |𝑎𝑎ℓ|2 =∞
ℓ=0

4𝜋𝜋
𝑖𝑖2
∑ (2ℓ + 1) � 𝑗𝑗ℓ(𝑖𝑖𝑘𝑘)

ℎℓ
(1)(𝑖𝑖𝑘𝑘)

�
2

∞
ℓ=0 .  This 

expression is not particularly informative.  However, consider the “small sphere” limit 
𝑘𝑘𝑎𝑎 ≪ 1, which means that the sphere is much smaller than the deBroglie wavelength of 
the incident particle, or alternatively the incident particle has “low energy.”  By examining 
the Bessel functions in the small argument limit, one arrives at the further rather un-helpful 

result: 𝜎𝜎 = 4𝜋𝜋
𝑖𝑖2
∑ 1

2ℓ+1
 ∞

ℓ=0 � 2
ℓℓ!

(2ℓ)!
�
4

(𝑘𝑘𝑎𝑎)4ℓ+2.  But in the 𝑘𝑘𝑎𝑎 ≪ 1 limit we can take just the 
first term in the sum since 𝑘𝑘𝑎𝑎 appears to such a high power, leading to 𝜎𝜎 ≈ 4𝜋𝜋𝑎𝑎2, which 
corresponds not to the cross-sectional area presented by the sphere, but rather its entire 
surface area!  The quantum waves somehow feel their way around the entire sphere during 
the scattering process. 
 
Partial Wave Phase Shifts 

We continued the discussion of scattering by considering a reformulation of the 
scattering from a spherically-symmetric potential in terms of partial wave phase shifts.  
Consider scattering against a hard-wall potential in one-dimension.  An incident particle 
from one side of the barrier will be fully reflected, hence far from barrier the amplitude of 
the reflected and incident waves will be identical because probability is conserved.  Thus 
the only effect of a complicated scattering potential 𝑉𝑉(𝑥𝑥) localized near the barrier will 
simply be a phase shift of the reflected wave relative to the incident wave.  By convention 
this phase shift is taken to be 2𝛿𝛿.  One writes the total wavefunction for the scattering 
process as 𝜓𝜓(𝑥𝑥) = 𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑖𝑖(2𝛿𝛿−𝑖𝑖𝑖𝑖)�, where the first term represents an incident right-
going wave and the second term is the reflected and phase shifted wave.  Note that this 
wavefunction is written in the radiation zone far from the potential.  One can find the phase 
shift 𝛿𝛿 by solving the Schrodinger equation in the scattering region and matching the result 
onto the radiation zone.  Alternatively, one can measure the phase shift as a function of the 
energy of the incident particle. From the dependence 𝛿𝛿(𝑘𝑘) one could in principle deduce 
the potential function 𝑉𝑉(𝑥𝑥) of the scattering region. 
 Now take this idea to the case of 3D scattering.  By writing the incident wave 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  
as 
𝜓𝜓0 = ∑ 𝑖𝑖ℓ (2ℓ + 1) 𝑗𝑗ℓ(𝑘𝑘𝑟𝑟) ℓ 𝑃𝑃ℓ(cos 𝜃𝜃), 
we can think of it in terms of partial waves of the form:  

𝜓𝜓0
(ℓ) = 𝐴𝐴 𝑖𝑖ℓ (2ℓ + 1) 𝑗𝑗ℓ(𝑘𝑘𝑟𝑟)𝑃𝑃ℓ(cos𝜃𝜃) 

Writing 𝑗𝑗ℓ(𝑘𝑘𝑟𝑟) = 1
2

 �ℎℓ
(1)(𝑘𝑘𝑟𝑟) + ℎℓ

(2)(𝑘𝑘𝑟𝑟)� in the asymptotic (radiation) regime these 
partial waves become:  
𝜓𝜓0

(ℓ) = 𝐴𝐴 (2ℓ+1)
2𝑖𝑖

 �𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑟𝑟
− (−1)ℓ  𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑟𝑟
�  𝑃𝑃ℓ(cos𝜃𝜃). 

The first term in the bracket represents the outgoing wave while the second term represents 
a converging incident spherical wave.  The effect of a non-zero scattering potential will be 
to add a phase shift 2𝛿𝛿ℓ to the outgoing wave, unique to each partial wave.  Thus, the wave 
measured in the radiation regime will be modified to be: 
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𝜓𝜓(ℓ) = 𝐴𝐴 (2ℓ+1)
2𝑖𝑖

 �𝑒𝑒
𝑖𝑖�𝑖𝑖𝑖𝑖+2𝛿𝛿ℓ�

𝑖𝑖𝑟𝑟
− (−1)ℓ  𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑟𝑟
�  𝑃𝑃ℓ(cos𝜃𝜃). 

By comparing this to the form of the original partial wave solution: 𝜓𝜓(𝑟𝑟,𝜃𝜃) =
𝐴𝐴�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ∑ 𝑖𝑖ℓ+1 (2ℓ + 1) 𝑎𝑎ℓ ℎℓ

(1)(𝑘𝑘𝑟𝑟) ℓ 𝑃𝑃ℓ(cos𝜃𝜃)�, substituting the asymptotic form for 

𝜓𝜓0
(ℓ) in place of 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, and then equating term by term in the angular momentum sum, one 

finds the relationship between the partial wave amplitudes 𝑎𝑎ℓ and the phase shifts 𝛿𝛿ℓ of 
𝑎𝑎ℓ = 1

2𝑖𝑖𝑖𝑖
 �𝑒𝑒𝑖𝑖2𝛿𝛿ℓ − 1� = 1

𝑖𝑖
𝑒𝑒𝑖𝑖𝛿𝛿ℓ sin 𝛿𝛿ℓ.  Note that we have replaced the complex partial wave 

amplitude 𝑎𝑎ℓ with a single real quantity, the partial wave phase shift 𝛿𝛿ℓ.  This is possible 
because the scattering potential 𝑉𝑉(𝑟𝑟) is assumed to be spherically symmetric and therefore 
conserves angular momentum. 
 We can now express the scattering amplitude as 𝑓𝑓(𝜃𝜃) = ∑  (2ℓ +ℓ=0

1) 𝑎𝑎ℓ 𝑃𝑃ℓ(cos 𝜃𝜃) = 1
𝑖𝑖
∑ (2ℓ + 1)𝑒𝑒𝑖𝑖𝛿𝛿ℓ  sin 𝛿𝛿ℓ 𝑃𝑃ℓ(cos𝜃𝜃)∞
ℓ=0 .  The total scattering cross section 

can be written as 𝜎𝜎 = 4𝜋𝜋∑ (2ℓ + 1) |𝑎𝑎ℓ|2∞
ℓ=0 =  4𝜋𝜋

𝑖𝑖2
 ∑ (2ℓ + 1) sin2(𝛿𝛿ℓ) ∞

ℓ=0 . 
 As an example we returned to the quantum hard sphere scattering case with 𝑉𝑉(𝑟𝑟) =
�∞ for 𝑟𝑟 ≤ 𝑎𝑎

0 for 𝑟𝑟 > 𝑎𝑎 .  We found above that the partial wave amplitudes are given by 𝑎𝑎ℓ =

𝑖𝑖 𝑗𝑗ℓ(𝑖𝑖𝑘𝑘)

𝑖𝑖 ℎℓ
(1)(𝑖𝑖𝑘𝑘)

.  Equate the real and imaginary parts of this expression to 1
𝑖𝑖
𝑒𝑒𝑖𝑖𝛿𝛿ℓ sin 𝛿𝛿ℓ =

1
𝑖𝑖

 (cos𝛿𝛿ℓ sin 𝛿𝛿ℓ + 𝑖𝑖 sin2(𝛿𝛿ℓ)) to find that 𝛿𝛿ℓ = tan−1 �𝑗𝑗ℓ(𝑖𝑖𝑘𝑘)
𝑛𝑛ℓ(𝑖𝑖𝑘𝑘)�.  We can evaluate this phase 

shift for the ℓ = 0 partial wave to find 𝛿𝛿0 = −tan−1(tan(𝑘𝑘𝑎𝑎)) = −𝑘𝑘𝑎𝑎.  Calculating the 
total scattering cross section 𝜎𝜎 = 4𝜋𝜋

𝑖𝑖2
 ∑ (2ℓ + 1) sin2(𝛿𝛿ℓ)∞

ℓ=0 , and assuming that the ℓ = 0 
term dominates and 𝑘𝑘𝑎𝑎 ≪ 1, yields 𝜎𝜎 ≅ 4𝜋𝜋𝑎𝑎2, which is the same result derived by partial 
wave analysis in the “small sphere” limit 𝑘𝑘𝑎𝑎 ≪ 1. 
 
 
  
 
 
 
 
 
 
 
 
 


